Online:
2018-01-20
Published:
2018-01-20
通讯作者:
张宁
基金资助:
CLC Number:
丁一,丁箐雯,李冰清,沈易,张宁*,吴殿星. 转基因技术改良水稻淀粉品质研究进展[J]. 中国稻米, DOI: 10.3969/j.issn.1006-8082.2018.01.001 .
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2018.01.001
[1] Smith A M,K Denyer A, Martin C. The synthesis of the starch granule[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 65-87. [2] Zeeman S C, Kossmann J, Smith A M. Starch: Its metabolism, evolution, and biotechnological modification in plants[J]. Annu Rev Plant Biol, 2010, 61: 209-234. [3] Fujita N. Starch Biosynthesis in rice endosperm[J]. Agri-Bioscience Monographs(AGBM), 2014, 4(1): 1-18. [4] Bajaj S, A Mohanty. Recent advances in rice biotechnology-towards genetically superior transgenic rice[J]. Plant Biotechnol J, 2005, 3(3): 275-307. [5] Sakulsingharoj C, Choi S B, Hwang S K, et al. Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase[J]. Plant Sci, 2004, 167(6): 1 323-1 333. [6] 宋敏,李援亚,张云孙.导入AGPase基因的转基因可育水稻及其经济性状的研究[J]. 华北农学报,2001,16(4):11-14. [7] Fasahat P, Rahman S, Ratnam W. Genetic controls on starch amylose content in wheat and rice grains[J]. J Genet, 2014, 93(1): 279-292. [8] Shimada H, Tada Y, Kawasaki T, et al. Antisense regulation of the rice waxy gene-expression using a pcr-amplified fragment of the rice genome reduces the amylose content in grain starch[J]. Theor Appl Genet, 1993, 86(6): 665-672. [9] Terada R, Nakajima M, Isshiki M, et al. Antisense Waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice[J]. Plant Cell Physiol, 2000, 41(7): 881-888. [10] Itoh K, Ozaki H, Okada K, et al. Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice[J]. Plant Cell Physiol, 2003, 44(5): 473-480. [11] Shimada H, Tada Y, Kawasaki T, et al. Antisense regulation of the rice waxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch[J]. TheorAppl Genet, 1993, 86(6): 665-672. [12] 陈秀花,刘巧泉,王兴稳,等. 反义Wx基因导入我国籼型杂交稻重点亲本[J]. 科学通报,2002,47(9):684-688. [13] Zeng D, Yan M, Wang Y, et al.Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx(b)supercript stop pre-mRNAs in rice (Oryza sativa L.)[J]. Plant MolBiol, 2007, 65(4): 501-509. [14] 胡昌泉,徐军望,苏军,等. 农杆菌介导法获得转可溶性淀粉合成酶基因籼稻[J]. 福建农业学报,2003,18(2):65-68. [15] Naoko F, Isao H, Sachi S, et al. Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage alpha-glucan[J]. J Exp Bot, 2012, 63(16): 5 859-5 872. [16] Liu Q, Wang Z, Chen X, et al. Stable inheritance of the antisense Waxy gene in transgenic rice with reduced amylose level and improved quality[J]. Transgenic Res, 2003, 12(1): 71-82. [17] Crofts N, Abe K, Aihara S, et al. Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm[J]. Plant Sci, 2012, 193: 62-69. [18] Hanashiro I, Itoh K, Kuratomi Y, et al. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice[J]. Plant Cell Physiol, 2008, 49(6): 925-933. [19] Tanaka N, Fujita N, Nishi A, et al. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme llb in rice endosperm[J]. Plant Biotechnol J, 2004, 2(6): 507-516. [20] Butardo V M, Fitzgerald M A, Bird A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial micro RNA- and hairpin RNA-mediated RNA silencing[J]. J Exp Bot, 2011, 62(14): 4 927. [21] Zhu L J. High-amylose rice improves indices of animal health in normal and diabetic rats[J]. Plant Biotechnol J, 2012, 10(3): 353-362. [22] Zhu L J, Liu Q Q, Wilson J D, et al. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content[J]. Carbohydrate Polymers, 2011, 86(4): 1 751 -1 759. [23] Wei C, Qin F, Zhou W, et al. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating[J]. Food Chem, 2011, 128(3): 645-652. [24] Wei C, Qin F, Zhu L, et al. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme[J]. J Agric Food Chem, 2010, 58(2): 1 224-1 232. [25] Man J, Yang Y, Zhang C, et al. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion[J]. J AgricFood Chem, 2012, 60(36): 9 332-9 341. [26] Qin F, Man J, Xu B, et al. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from bacillus licheniformis[J]. J AgricFood Chem, 2011, 59(23): 12 667-12 673. [27] Wei C, Xu B, Qin F, et al. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme[J]. J Agric Food Chem, 2010, 58(12): 7 383-7 388. [28] Sun M M, Lee H J, Abdula S E, et al. Overexpression of starch branching enzyme 1 gene improves eating quality in japonica rice[J]. J Plant Biotechnol, 2013, 40(2): 88-101. [29] Fujita N, Kubo A, Suh D S, et al. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm[J]. Plant Cell Physiol, 2003, 44(6): 607-618. [30] Krishnamurthy K, Giroux M J. Expression of wheat puroindoline genes in transgenic rice enhances grain softness[J]. Nature Biotechnol, 2001, 19(2): 162-166. [31] Chiang C M, Yeh F S, Huang L F, et al. Expression of a bi-functional and thermostable amylopullulanase in transgenic rice seeds leads to autohydrolysis and altered composition of starch[J]. Mol Breed, 2005, 15(2): 125-143. [32] Su J, Hu C, Yan X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015, 523(7562): 602. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||